CENTRO DE INVESTIGACIÓN EN SANIDAD ANIMAL	DETECTION OF AFRICAN SWINE FEVER VIRUS (ASFV) BY REAL-TIME POLYMERASE CHAIN REACTION (PCR)	SOP/CISA/ASF/PCR/2	
(CISA – INIA)	REV. 2018	Page 1 of 7	

	CONTENTS							
1.	PURPOSE							
2.	SCOP	PE						
3.	REFE	RENCES						
	3.1.	3.1. DOCUMENTS USED IN THE PROCEDURE REDACTION						
	3.2.	3.2. COMPLEMENTARY DOCUMENTS (SOPs) TO BE USED						
4.	BACKGROUND INFORMATION							
5.	PROCEDURE DESCRIPTION							
	5.1.	EQUIPMENT AND MATERIALS						
	5.2.	PROCEDURE EXECUTION						
	5.3.	ANALYSIS AND INTERPRETATION OF RESULTS						
	5.4.	CRITICAL POINTS						
	5.5.	SECURITY MEASURES						
	5.6.	QUALITY CONTROL						

 CENTRO DE INVESTIGACIÓN EN SANIDAD ANIMAL (CISA – INIA)
 DETECTION OF AFRICAN SWINE FEVER VIRUS (ASFV) BY REAL-TIME POLYMERASE CHAIN REACTION (PCR)
 SOP/CISA/ASF/PCR/2

 Page 2 of 7

1. PURPOSE

The purpose of this procedure is to rapidly detect the specific presence of African Swine Fever Virus (ASFV) DNA in porcine clinical material by the real-time polymerase chain reaction (PCR) technique.

Currently this technique is included as OIE - prescribed real time PCR test in the Chapter 2.8.1 of the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2012 Edition.

2. SCOPE

This procedure is applied to the ASFV DNA extracted following the procedure described in the **SOP/CISA/ASF/DNA EXTRACTION/1** (*"Standard operating procedure for the extraction of African Swine Fever Virus (ASFV) DNA"*) in any kind of porcine clinical sample such as EDTA-blood, serum and tissue homogenates and in cell culture supernatants. It is particularly useful for identifying ASFV DNA in porcine tissues that are unsuitable for virus isolation or antigen detection, because they have undergone putrefaction, or when there is good reason to believe that virus may has been inactivated before samples are received in the laboratory. PCR technique is highly sensitive, and its detection limit is below one infectious viral particle.

3. REFERENCES

3.1. DOCUMENTS USED IN THE PROCEDURE REDACTION

 AFRICAN SWINE FEVER. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (mammals, birds and bees). CHAPTER 2.8.1. OIE, 2012. <u>http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.08.01_ASF.pdf</u>]

- Gallardo C, Nieto R, Soler A, Pelayo V, Fernández-Pinero J, Markowska-Daniel, Pridotkas G, Nurmoja I, Granta R, Simón A, Pérez C, Martín E, Fernández-Pacheco P, Arias M. Assessment of African Swine Fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How To Improve Surveillance and Control Programs. J Clin Microbiol. 2015 Aug;53(8):2555-65.
- D.P. King, S.M. Reid, G.H. Hutchings, S.S. Grierson, P.J. Wilkinson, L.K. Dixon, A.D.S. Bastos, T.W. Drew. 2003. « Development of a TaqMan PCR assay with internal amplification control for the detection of African Swine Fever Virus". J. Virol. Methods, 107: 53-61.

ASF REVIEWS:

- 1. Arias, M., Sánchez-Vizcaíno, J.M. (2012). African swine fever. In: Zimmerman, J., Karriker, L.A., Ramirez, A., Schwartz, K.J, Stevenson, G.W. (Eds), Diseases of swine, 10th Edition. John Wiley and Sons, United States of America, pp. 396-404.
- Food and Agriculture Organization of the United Nations (FAO). AFRICAN SWINE FEVER: DETECTION AND DIAGNOSIS. A manual for veterinarians. FAO 2017 <u>http://www.fao.org/3/ai7228e.pdf</u>
- Oura CA, Edwards L, Batten CA. "Virological diagnosis of African swine fever-Comparative study of available tests". Virus Res. 2012 Nov 3. doi:pii: S0168-1702(12)00411-X. 10.1016/j.viruses.2012.10.022. [Epub ahead of print]

3.2. COMPLEMENTARY DOCUMENTS (SOPs) TO BE USED.

- Procedure of samples processing for African swine fever (ASF) diagnosis (SOP/CISA/SAMPLE/1).
- Procedure for the extraction of African Swine Fever Virus (ASFV) DNA (SOP/CISA/ASF/DNA EXTRACTION/1).

4. BACKGROUND INFORMATION

4.1. ABBREVIATION

ASF: African swine fever ASFV: African swine fever virus DNA: Deoxyribonucleic acid

CENTRO DE INVESTIGACIÓN EN SANIDAD ANIMAL	DETECTION OF AFRICAN SWINE FEVER VIRUS (ASFV) BY REAL-TIME POLYMERASE CHAIN REACTION (PCR)	SOP/CISA/ASF/PCR/2	
(CISA – INIA)	REV. 2018	Page 3 of 7	

E+: ASFV positive extraction control E-: ASFV negative extraction control R+: ASFV DNA reaction positive control R-: ASFV DNA reaction negative control PCR: polymerase chain reaction r.p.m.: revolutions per minute

4.2. BACKGROUND

Polymerase chain reaction (PCR) is a molecular genetic technique which allows the specific detection of ASFV DNA by enzyme-based amplification of a short viral genome fragment defined by a specific primer set. Under controlled conditions, multiple copies of DNA are generated by the action of the **DNA polymerase enzyme**, that add complimentary **deoxynucleotides (dNTPs)** to a piece of DNA known as the "template". Real-time PCR is an advanced amplification method, which allows the automated detection of the amplified product, reducing the risk of carry-over contamination with increased specificity and in most cases, even sensitivity.

PCR method requires a first step of viral DNA extraction from the original material to be analysed, which will be the template for the PCR. In real-time PCR, the appearance of amplified product is monitored continuously, in special equipments, with the incorporation in the reaction mix of a fluorescent dye that will give a fluorescence signal in a proportional way to the amplicon accumulation. By determination of fluorescence signal intensity in each amplification cycle, a sigmoid-shaped curve, that represents the amplicon appearance along the PCR, will be obtained.

The described ASFV real-time PCR method uses a primer set and a specific TaqMan probe directed to a highly conserved region of the viral genome, VP72, which ensure the detection of a wide range of ASFV isolates, **belonging to all the 24 known virus genotypes**. The primers amplify a DNA fragment of **250 bp, from nucleotide position 2041 to 2290 of the complete VP72 gene sequence** of the reference strain BA71V (*GenBank accession no. ASU18466*). TaqMan probe employed for amplified product detection is labelled with a reporter at 5' end [6-carboxy-fluorescein (FAM)] and a quencher at 3' end [6-carboxy-tetramethyl-rhodamine (TAMRA)].

PCR is a rapid method, which can be performed in less than four hours, and highly sensitive, allowing the viral detection even before the appearance of clinical symptoms in the infected animals. PCR is the tool of choice in case of **hyperacute**, acute or **subacute infection with ASF**.

5. PROCEDURE DESCRIPTION

5.1. EQUIPMENT AND MATERIALS

MATERIALS

- Freezer <-10°C.
- Freezer <u><</u>-70^oC.
- Fridge 4±3°C.
- Latex or nitrile gloves.
- Microcentrifuge for eppendorf tubes.
- Microcentrifuge tubes of volumes 0.2 (optical quality), 0.5, 1.5, and 2 ml, sterile.
- Microcentrifuge tubes of volume 0.5 ml, amber colour.
- PC connected to thermocycler.
- Real-time thermocycler [MX3005P, Stratagene or similar characteristics].
- Single channel pipette 1-10µl.
- Single channel pipette 10-100µl.
- Single channel pipette 10-200µl.
- Single channel pipette 200-1000µl
- Tube racks.
- Vortex

REAGENTS.

QuantiFast Probe PCR kit, commercially available from Qiagen (Ref. 204352, 100 reactions; ref. 204354, 500 reactions). Store at <-10°C.

CENTRO DE INVESTIGACIÓN EN SANIDAD ANIMAL	DETECTION OF AFRICAN SWINE FEVER VIRUS (ASFV) BY REAL-TIME POLYMERASE CHAIN REACTION (PCR)	SOP/CISA/ASF/PCR/2	
(CISA – INIA)	REV. 2018	Page 4 of 7	

- **TaqMan probe** at a concentration of 10 pmol/µl: 5'-FAM-CCACGGGAGGAATACCAACCCAGTG-TAMRA-3'. Store <-10°C in aliquot, kept always out of light. Expiry date: 1 year
- Primers at a concentration of 20 pmol/µl Store <-10°C in aliquots. Expiry date: 1 year:
 - primer King-s sequence 5'-CTGCTCATGGTATCAATCTTATCGA-3' (forward primer);
 - primer **King-a** sequence 5'-GATACCACAAGATCRGCCGT-3' (reverse primer).
- Nuclease-free sterile H₂O, PCR grade.
- **Positive and negative controls:** the following controls must be included in each PCR run:
 - ⇒ E+→ ASFV positive sample target control for the extraction: ASFV positive sample (serum, EDTA-blood, 1/10 tissue homogenates or culture supernatants) diluted in negative sample. It's highly recommended that the positive control is about the detection limit of the technique to track the yield of the DNA extraction procedure. Store <-10°C in aliquots. Expiry date: 6 months.
 - \Rightarrow E- \rightarrow negative sample control for the extraction: distilled water which is included during the extraction process to exclude contaminations.
 - ⇒ R+→ASFV positive DNA target control for the reaction: ASFV positive DNA. It's highly recommended that the positive control is about the detection limit of the technique to track the yield of the PCR procedure Store <-10°C in aliquots. Expiry date: 6 months.</p>
 - \Rightarrow R- \rightarrow negative DNA target control for the reaction: distilled water which is included during the PCR process to exclude contaminations.

5.2. METHODS

General aspects:

- The assay amplifies a DNA fragment of 250 bp of the ASFV VP72 genome region.
- The PCR is carried out in a volume of 20 μl.
- TaqMan probe must be kept away from light (it should be placed in amber tubes)

- $2 \mu l$ of sample is added to each reaction tube after master mix preparation.
- At least, one positive reaction control (2 μl of ASFV DNA, in the range of the detection limit of the technique) and one negative reaction control (2 μl of distilled water) should be included in each PCR run.

Master mix preparation:

In a sterile 1.5 ml microcentrifuge tube prepare the PCR reaction mixtures described below for the number of samples to be assayed (including R+ and R- controls) allowing for at least two extra samples.

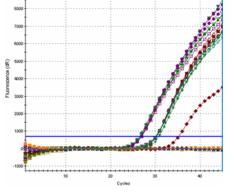
Pippeting step	MASTER MIX REAGENTS	1x VOLUME (reaction 20μl)	FINAL CONCENTRATION		
1	H ₂ O	6.7µl			
2	Master mix 2X	10 µl	1X		
3	Primer King-s 20 μM	0.4µl	0.4 μM		
4	Primer King-a 20 μM	0.4µl	0.4 μM		
5	TaqMan probe 10 μM	0.5µl	0.25 μM		
Ma	aster mix volume	18 µl			

- Add 18 μl of the PCR reaction mix to the required number of 0.2 ml optical PCR tubes
- Add 2µl of DNA template to each PCR tube. Include R+ control (2 µl of ASFV DNA) and R- control (2 µl of distillate water).
- After addition of the template, close the reaction tube and spin down the PCR mix. Place all tubes in an automated real-time thermocycler. Run the incubation program detailed below.

PCR CYCLE CONDITIONS.

PCR STEP	Temperature	Time	N ^o cycles				
Activation of TaqGold DNA pol	95ºC	3 min	1x				
DNA denaturation	95ºC	10 sec	45 x				
Primer annealing/elongation	58ºC	30 sec	45 X				
Program the fluorescence collection in FAM channel							
at the end of each cycle.							

CENTRO DE INVESTIGACIÓN EN SANIDAD ANIMAL	DETECTION OF AFRICAN SWINE FEVER VIRUS (ASFV) BY REAL-TIME POLYMERASE CHAIN REACTION (PCR)	SOP/CISA/ASF/PCR/2	
(CISA – INIA)	REV. 2018	Page 5 of 7	


5.3. ANALYSIS AND INTERPRETATION OF RESULTS

The point where the fluorescence measurement is above the background signal and goes into detectable level is called the cycle threshold (Ct). This will be the starting fluorescence point to consider a sample as positive. The Ct value is inversely proportional to the starting amount of DNA template present in the reaction mixture that means in the analysed sample. The Ct value is automatically determined by the software of the thermocycler

The assay will be considered as validated when the E+ and R+ have a Ct value within the range 32 ± 4 and the E- and R- Ct \geq 40. Otherwise, the analysis should be repeated

In a **positive sample**, a sigmoid-shaped amplification curve will be obtained, indicating the cycles number versus read fluorescence level, where the Ct value will be under 40. A **negative sample** will maintain the fluorescence profile under background fluorescence level and the equipment will not report any Ct value (see figure).

Ct value >38 samples should be considered as doubtful result if a sigmoidal plot is observed and the analysis should be repeated for confirmation. Ct value >38 samples should be considered as negative if the amplification plot has a linear shape. These latter plots may represent spurious probe degradation or non-specific fluorescence.

5.4. CRITICAL POINTS

Because of PCR is a highly sensitive technique, the most critical point along all the analysis procedure is the considerable risk of carry-over contamination, and the false positive results that could be obtained in this situation. The contamination could be due to the ASFV itself present in the positive analysed samples or in the positive controls included in the DNA extraction procedure; also, it could be due to ASFV DNA obtained after amplification of a previous PCR. It is mandatory that personnel working on PCR follow and carry out some strict work rules in order to minimize the contamination risk associated to PCR technique:

- All steps of sample analysis by PCR should be performed in <u>separate locations</u>, using equipment and material specific for each one: sample preparation, DNA extraction, PCR mix preparation, and removal of PCR products.
- Personnel must work always with clean nitrile or latex <u>gloves</u> in the PCR laboratory.
- Whenever personnel goes into a different PCR area, should be remove the gloves and take clean ones.
- The material will be of <u>exclusive</u> use for the PCR procedure step in which is located/labelled.
- Use a new pippete tip each time that a tube containing any sample or DNA is manipulated.
- Tubes containing amplified product should <u>never</u> be opened and manipulated in other laboratory distinct to that exclusively assigned to their analysis by electrophoresis, where they will be discarded.

5.5. SECURITY MEASURES

- Read and follow carefully the complete procedure.
- Keep reagents to the appropriate temperature before and after use.
- Do not pool reagents or instructions from different kits.
- Avoid any contamination of reagents.
- Do not use any reagent after it expiration date has passed.
- Do not eat, drink or smoke in the laboratory.
- Do not pipette by mouth.

CENTRO DE INVESTIGACIÓN EN SANIDAD ANIMAL	DETECTION OF AFRICAN SWINE FEVER VIRUS (ASFV) BY REAL-TIME POLYMERASE CHAIN REACTION (PCR)	SOP/CISA/ASF/PCR/2	
(CISA – INIA)	REV. 2018	Page 6 of 7	

- Wear always protective disposable nitrile or latex gloves.
- Probes used for amplified product detection are highly sensitive to light, so they should be manipulated for the minimum time, and must be kept always out of light (it is recommended to use amber colour tubes to keep probes stock and to prepare reaction mix).

5.6. QUALITY CONTROL

Annually, the European Union Reference Laboratory for ASF, CISA-INIA, Valdeolmos, Madrid, Spain, organizes an Interlaboratory Comparison Test (ILCT) to evaluate the diagnostic techniques for ASF available in all National Reference Laboratories of the EU.

The ILCT consists of a number of blind clinical material to be tested by the different diagnostic techniques in use in the laboratory. The real time-PCR described in this procedure has been fully validated along the ILCTs performed by the EURL.

Worksheet CISA/ASF/PCR/2

ID REGISTER: DATE: **TECHNICIAN: EXTRACTION KIT BATCH Nº:** E+ BATCH Nº: R+ BATCH Nº: **AMPLIFICATION PROGRAM:**

Pippeting step	MASTER MIX REAGENTS	1x VOLUME (reaction 20μl)	Nx	FINAL CONCENTRATION		
1	H ₂ O	6,7µl				
2	Master mix 2X	10 µl		1X		
3	Primer King-s 20 μ M	0,4µl		0,4 μM		
4	Primer King-a 20 μM	0,4µl		0,4 μM		
5	TaqMan probe 10 μ M	0,5µl		0,25 μM		
	Master mix volume	18 µl				
8	Addition of 2µl of DNA template (test samples and reaction controls)					

ID SAMPLES											
		<u>.</u>	1		<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>		